Skip to content
Go back

Testing LaTeX equations

Published:  at  01:45 PM

This document demonstrates how to use LaTeX\LaTeX equations in your Markdown files for AstroPaper. LaTeX\LaTeX is a powerful typesetting system often used for mathematical and scientific documents.

Inline Equations

Inline equations are written between single dollar signs $...$. Here are some examples:

  1. The famous mass-energy equivalence formula $E = mc^2$ : E=mc2E = mc^2
  2. The quadratic formula $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ : x=b±b24ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
  3. Euler’s identity $e^{i\pi} + 1 = 0$ : eiπ+1=0e^{i\pi} + 1 = 0

Block Equations

For more complex equations or when you want the equation to be displayed on its own line, use double dollar signs $$...$$:

The Gaussian integral

$$ \int_{-\infty}^{\infty} e^{-x^2} dx = \sqrt{\pi} $$

ex2dx=π\int_{-\infty}^{\infty} e^{-x^2} dx = \sqrt{\pi}

The definition of the Riemann zeta function

$$ \zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} $$

ζ(s)=n=11ns\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}

Maxwell’s equations in differential form

$$
\begin{aligned}
\nabla \cdot \mathbf{E} &= \frac{\rho}{\varepsilon_0} \\
\nabla \cdot \mathbf{B} &= 0 \\
\nabla \times \mathbf{E} &= -\frac{\partial \mathbf{B}}{\partial t} \\
\nabla \times \mathbf{B} &= \mu_0\left(\mathbf{J} + \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t}\right)
\end{aligned}
$$
E=ρε0B=0×E=Bt×B=μ0(J+ε0Et)\begin{aligned} \nabla \cdot \mathbf{E} &= \frac{\rho}{\varepsilon_0} \\ \nabla \cdot \mathbf{B} &= 0 \\ \nabla \times \mathbf{E} &= -\frac{\partial \mathbf{B}}{\partial t} \\ \nabla \times \mathbf{B} &= \mu_0\left(\mathbf{J} + \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t}\right) \end{aligned}

Using Mathematical Symbols

LaTeX provides a wide range of mathematical symbols:


Testing specific characters:

$H_a: \theta>\theta_0$

Results:

Ha:θ>θ0H_a: \theta>\theta_0

$\not\in$
$\neq$
$\neg$
$\sim$
$\nexists$
$\lambda$
$\lmoustache\0\2pi$

Results

∉\not\in \neq ¬\neg \sim \nexists λ\lambda π\lmoustache\pi

$$
\begin{equation*}
\begin{aligned}
\iiint_{\mathcal{Q}} f(w,x,y,z) \,dw \,dx \,dy \,dz
&\leq 
\oint_{\partial Q} f'
  \left(
    \max \left\{ \frac{|w|}{|{w^2 + x^2}|} ; 
    \frac{|z|}{|{y^2 + z^2}|} ;
    \frac{|{w \oplus z}|}{|{x \oplus y}|} \right\}
  \right)
\\
&\precapprox
\biguplus_{\mathbb{Q} \Subset \bar{Q}}
  \left[ f^* \left(
    \frac{\lmoustache \mathbb{Q}(t)\rmoustache}{\sqrt{1 - t^2}}
  \right) \right]^{t=9}_{t=\alpha}
\end{aligned}
\end{equation*}
$$
Qf(w,x,y,z)dwdxdydzQf(max{ww2+x2;zy2+z2;wzxy})QQˉ[f(Q(t)1t2)]t=αt=9\begin{equation*} \begin{aligned} \iiint_{\mathcal{Q}} f(w,x,y,z) \,dw \,dx \,dy \,dz &\leq \oint_{\partial Q} f' \left( \max \left\{ \frac{|w|}{|{w^2 + x^2}|} ; \frac{|z|}{|{y^2 + z^2}|} ; \frac{|{w \oplus z}|}{|{x \oplus y}|} \right\} \right) \\ &\precapprox \biguplus_{\mathbb{Q} \Subset \bar{Q}} \left[ f^* \left( \frac{\lmoustache \mathbb{Q}(t)\rmoustache}{\sqrt{1 - t^2}} \right) \right]^{t=9}_{t=\alpha} \end{aligned} \end{equation*} Vf(s)dsVf(x,y,z)dxdydz\oint_V f(s) \,ds \iiint_V f(x,y,z) \,dx \,dy \,dz

🤖



Previous Post
Why I Created This Blog